
Dutch Wastewater management

A contribution to the circular economy

Introduction

- Name / Paul Versteeg
- Organization / Dutch Water Authorities
- E-mail:info@dutchwaterauthorities.com

Water management in The Netherlands

European Union

Legislation

National level

Legislation, water management, big rivers

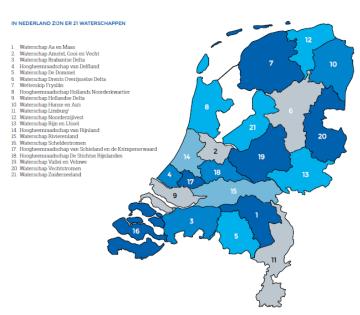
Provincial level

Regulations, spatial planning

Municipal level

Town planning, Sewage system

Waterauthorities


Regional Water management, Waste water treatment

Waterauthorities

Independent government body:

- since 1255
- own legal power
- own tax system
- own elections
- 11.000 employees
- Amount of wwtp; 335
- Taxes income; € 2700 mln (2017)

National level ambition; sustainable economical growth

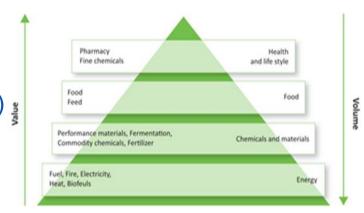
- Ambition: economy is growing in size, without disadvantages for climate, water, soil, raw materials and biodiversity
- Society develops sustainable plans and takes initiatives
- National sustainable development policy

circular economy

- 50% less use of primary raw materials in 2030
- circular economy in 2050

energy agreement

- 1,5% a year savings in energy consumption
- increase renewable energy: 4% 2013 to 14% in 2020


Ambition regional water authorities

Circular Economy

- Recovery of materials from waste water
- Buying sustainable products (green energy)

Energy agreement

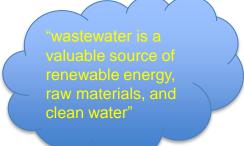
- 2% a year savings in energy consumption
- increase renewable energy: 30% 2016 to 40% in 2020

Instruments for sustainable development

1. WWTP as energy and raw materials factory

2. Regional water authorities as launching customers

3. Administrative agreements


Instrument 1: Energy and raw materials factory

Collaborative network organization

- Dutch water authorities.
- the Foundation for Applied Water Research (STOWA),
- knowledge institutes (Delft University, WETSUS, Wageningen University),
- The Netherlands Green Gas Foundation.
- Agua minerals,
- and many others.

Products

- Phosphate,
- Cellulose,
- **Bioplastics**
- Alginate
- Proteins?
- Energy

http://www.efgf.nl/ https://www.youtube.com/watch?v=CT9IVE6wfIc

Instrument 2: Regional water authorities as launching customers

- 1. user of principle innovations that are applicable elswhere
- Making sites and resources available for companies and research institutions
- Procure in an innovative manner

Instrument 3: administrative agreements

- 1. green deal raw materials 2014
- 2. green deal energy 2016
- 3. regional agreement water chain 2016

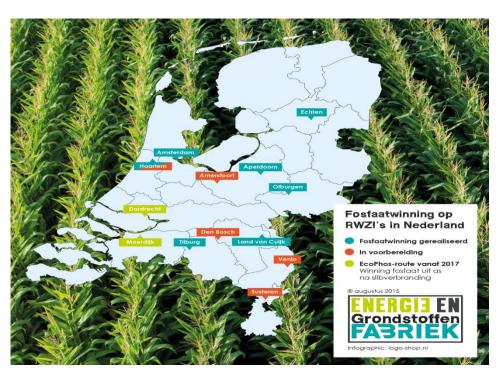
"Green Deal" approach

- To implement sustainable initiatives from companies and society
- Scaling-up of initiatives, combine experiences, to come to a broader application
- Themes; energy, water, transportation, climate, biodiversity, bio-based economy, raw materials, food and construction
- Government helps against (legal) barriers

What is accomplished so far?

Energy-production

- Legal aspects examined for the supply of electricity, gas and heat.
- Research on balance between raw material recovery and energy efficiency
- Explore local markets; supply & demand



Phosphorus

Phosphorus recovery as a fertilizer

- Research on struvite recovery
- Research on fertilizer value
- Quality control of produced struvite.
- Legislation; Struvite is listed as recovered fertilizer in an implementation-directive
- construction of ecophos-plant (Dunkirk) to recover phoshphorus from sludgeincinerationash

Cellulose

Research revenue model and (local) markets;

- insulating material in construction
- bio-ethanol production;
- "run-off" inhibitor in asphalt

Bioplastics (PHA)

Research on technical/economic feasibility;

- The harvested activated sludge can consistently produce a high quality PHA polymer that has interesting and meaningful application potentials.
- PHA can be produced at a competitive cost prize.
- The produced polymer has a 70% lower environmental impact compared to currently available PHA bioplastic.

Next step; upscaling to the demonstration phase and building a commercial factory to produce around 5,000 tons of PHBV per year with the potential to further scale up later on.

Neo-alginate

Research finished on;

- quality and quantity of alginate production from WWTP (neredatechnology)
- revenue model and (local) potential markets including application tests
- Extraction technology

Construction of a production facility in Zutphen started december 2017

Power-to-protein concept

Biochemical conversion with carbon capture and ammonia recovery

https://www.powertoprotein.eu/

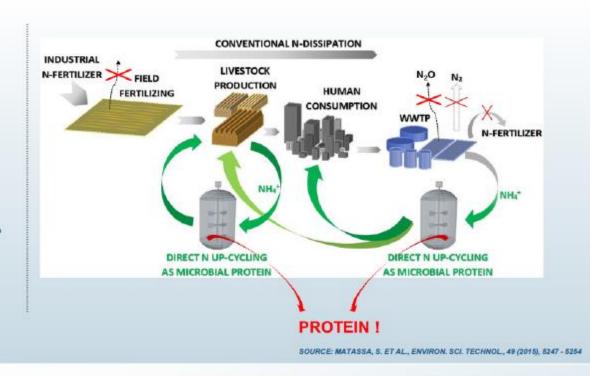
"Can direct conversion of used nitrogen to new feed and protein help feed the world?"

Ammonia from the waste water

Hydrogen Oxidizing Bacteria (HOB):

Aerobic, facultative autotrophic bacteria
By means of H₂ oxidation, CO₂ and NH₃-N
are incorporated into **protein-rich biomass: SCP**

$$5.2 \text{ H}_2 + 1.5 \text{ O}_2 + 1.0 \text{ CO}_2 + 0.2 \text{ NH}_3 \rightarrow \text{CH}_{1.7}\text{O}_{0.5}\text{N}_{0.2} + 4.6 \text{ H}_2\text{O}$$

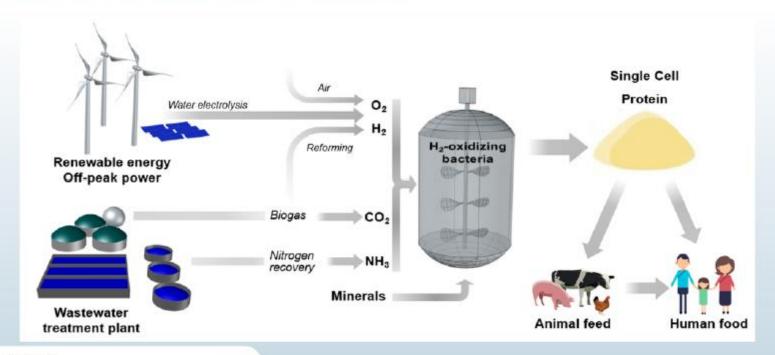

Power-to-protein concept

Direct upcycling of ammonia as microbial protein

The man-made artificial nitrogen cycle is very inefficient

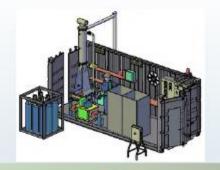
Haber Bosch → reactive N: 145 million tons/year enter our biosphere

Only 16% becomes edible protein; 84 % is lost to the environment



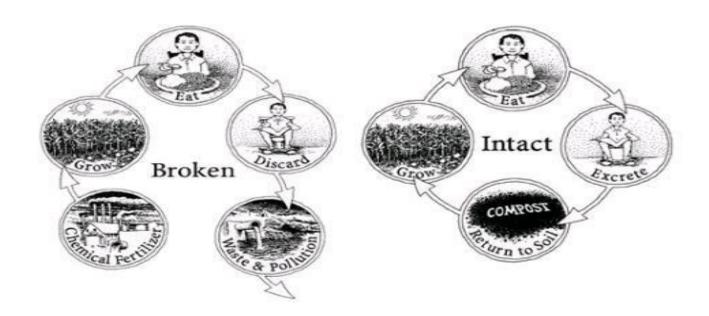
Power-to-protein concept

All sources from the waste water chain



Power-to-protein project Under the TKI Water Technology Programme

Late 2016 Pilot plant design and building



2017 Pilot test start on site of WWTP

Questions?

Rijnland

